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Abstract

This paper compares the use of multiple pools versus a single pool with respect to test security

against large-scale item sharing among some examinees in a computer-based test, under the

assumption that a randomized item selection method is used. It characterizes the conditions under

which employing multiple pools is better than using a single whole pool in terms of minimizing

the expected number of compromised items encountered by an examinee. The results obtained in

this paper provide guidelines for constructing multiple pools optimally and evaluating the risks

associated with some test designs that employ item reuse schemes. Finally, an adjusted-pool

approach is proposed to achieve better test security than either the single-pool approach or the

multiple-pool approach.

Key words: CBT, CAT, continuous-delivery test, multiple item pools, item sharing, item piracy,

test security
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1. Introduction

Computer-based testing (CBT), including computerized adaptive testing (CAT), makes it

possible for educational and psychological tests to be administered frequently or continuously.

A continuous-delivery test is preferred by examinees because of the flexibility it provides in

scheduling to take the test. However, continuous testing causes constant item exposure that

increases the risk of test item sharing; examinees who took tests earlier may share information

with those who will take tests later. The tactic of memorizing and sharing test item information

will inflate test scores for some examinees and consequently hurt other honest examinees.

A new problem that has emerged from current applications of CBT is large-scale coordinated

item sharing activities (Steinberg, 2002; Wheeler, 2002; Davey & Nering, 2002). The rapid growth

of Internet applications all over the world has created a new format for cheating, namely item

piracy. That is, some test takers organize a special interest group and share test item information

with each other through the Internet. As indicated by recent CBT test security incidents, filing

lawsuits can hardly stop this kind of item sharing. Without effective measures, this piracy and

sharing form of cheating could significantly undermine the credibility of any continuous-delivery

test. Thus, test security becomes one of the major unsolved issues for continuous-delivery tests,

especially for CAT tests that are used in making high-stakes decisions.

With continuously or close to continuously administered CBT, a very large item pool is

needed so as to maintain test security by making sure that examinees who take the test later

do not have an advantage over those tested earlier. In practice, available items for a test are

always limited. To minimize the impact of possible item sharing, item exposure rates should

be controlled. The exposure rate of an item is defined as the proportion of examinees who are

administered the item among all the examinees taking the test in a specified time period. Given

a set of items, an item exposure control mechanism is considered to be a major component in

maintaining the security of CBT (see Mills & Steffen, 2000; Stocking, 1994; Stocking & Lewis,

1995, 1998; Sympson & Hetter, 1985; Way, 1998). A related quantity to the item exposure rate is

the test overlap rate, which is defined as the average of the percentage of items shared by a pair of

examinees across all such pairs (Way, 1998; Chen, Ankenmann, & Spray, 2003). Test overlap rates

have been generalized to deal with the problem of large-scale item sharing (Chang & Zhang, 2002,

2003). When all item exposure rates are equalized, which would happen if a randomized item

selection method were used, then the item exposure control that is achieved is better in terms of
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test security than that achieved by any of the other item selection algorithms. For a fixed item

selection algorithm, some other mechanism besides item exposure control must be employed to

attain even better levels of test security.

Using multiple item pools is regarded as a viable strategy for enhancing test security for

CBT (Mills & Steffen, 2000; Davey & Nering, 2002). The multiple-pool approach periodically

rotates item pools in and out of use, trying to maintain a high degree of test security for CBT

used for making high-stakes decisions. However, it is unclear whether the use of multiple item

pools really helps test security. If an examinee who memorizes item information from one item

pool is instead administered items from another item pool, the impact of collusion should be

dramatically reduced. On the other hand, the examinee in this situation could be administered

items from an already compromised item pool. Then, because using multiple item pools reduces

the size of each item pool, the percentage of compromised items would be much higher than that

in the case of a large single item pool. Thus a fair comparison about test security between the

single-pool approach and the multiple-pool approach is needed. This paper investigates whether

using multiple item pools instead of a single pool is effective in improving test security. The major

criterion used for the comparison is the expected number of compromised items administered

to an examinee after a single pool or multiple pools have been used for some time period. The

smaller the expected number, the better the corresponding approach is.

A randomized item selection algorithm is assumed in this paper when comparing the

multiple-pool approach with the single-pool approach. The reasons for such an assumption are

that (a) probability theory can be easily applied under this assumption, and (b) item exposure

rates are balanced (i.e., the best test security is achieved). This paper also discusses how to

construct item pools optimally.

2. Main Results

Suppose there is a set of N items. The single-pool approach uses all items as a single pool,

while the multiple-pool approach constructs J item pools with Nj items in pool j (1 ≤ j ≤ J

and J ≥ 2) and rotates the pools in and out of use. An item that appears in more than one

pool (more precisely, subpool) is called a common item when the multiple-pool approach is

employed; otherwise it is a unique item. This paper considers special multiple-pool cases in which

there is no item that appears in more than two pools. When J = 2, this constraint is satisfied
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automatically. Let mjk be the number of common items of pool j and pool k for 1 ≤ j < k ≤ J .

Under the constraint,
∑J−1

j=1

∑J
k=j+1 mjk is the total number of common items in the J pools and∑J

j=1 Nj = N +
∑J−1

j=1

∑J
k=j+1 mjk. When J = 2, m12 = N1 + N2 −N . When m12 = 0, the two

pools are mutually exclusive. Note that using the single pool may be regarded as employing two

pools that are exactly the same (i.e., m12 = N1 = N2 = N).

Let Qj be the frequency of usage of pool j. Note that (Qj , j = 1, . . . , J) is the probability

distribution of the random variable for the selected pool being administered to a randomly

selected examinee when J pools are used. Typically, each pool will be used for the same amount

of time or for the same total number of examinees in the case of multiple pools. Thus a randomly

selected examinee should have the same chance of being administered any one of the pools; that

is, Q1 = · · · = QJ = 1/J .

After an item pool has been used for certain time period or after some number of examinees

have taken the test, some items might be compromised (e.g., the information of these items

has been shared by a group of examinees). Let n(t) be the number of compromised items at

time t (i.e., after t examinees have taken the test or after an item pool or multiple item pools

have been used for a period of time t) in the case when a single pool is used. Let nj(t) be the

number of compromised items in pool j at time t in the case when multiple pools are employed.

Then, r(t) = n(t)/N is the proportion of compromised items in the single pool at time t, and

rj(t) = nj(t)/Nj the proportion of compromised items in pool j for j = 1, . . . , J . Note that the

number of compromised items in an item pool increases as the time of use of the pool passes.

Thus, {n(t)} and {nj(t)} are monotone stochastic processes or time series. Let pjk(t) be the

proportion of compromised items among common items of pool j and pool k. Then, mjkpjk(t)

is the number of compromised common items of pool j and pool k and
∑J−1

j=1

∑J
k=j+1 mjkpjk(t)

is the total number of compromised common items between any two item pools. Denote

p∗(t) =
∑J−1

j=1

∑J
k=j+1 mjkpjk(t)/

∑J−1
j=1

∑J
k=j+1 mjk as the overall proportion of compromised

common items at time t.

Let

Xi(t) =

 1, if the ith item that is administered to an examinee is a compromised item;

0, otherwise.

Let PJ(i|t) be the probability that the ith item that an examinee gets is a compromised item

when a single pool (J = 1) or J (J > 1) pools are used, where 1 ≤ i ≤ L and L is the test length.
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That is,

P1(i|t) = Prob(Xi(t) = 1 | the single item pool is used),

and

PJ(i|t) = Prob(Xi(t) = 1 | J item pools are used) for J > 1.∑L
i=1 Xi(t) is the number of compromised items administered to an examinee at time t. Its

expectation, EJ [
∑L

i=1 Xi(t)] =
∑L

i=1 PJ(i|t), which is the expected number of compromised items

administered to an examinee, is a key index used in this paper for test security. Here EJ is the

operation of mathematical expectation given that one pool (J = 1) or multiple pools (J > 1) are

used. This index will be used as a criterion for judging test security with different approaches

in this paper. If P1(i|t) > PJ(i|t) for J > 1, then the multiple-pool approach is better than the

single-pool approach at time t, while the single-pool approach outperforms the multiple-pool

approach when P1(i|t) < PJ(i|t). Note that this paper always compares different approaches after

the same amount of usage. The notation used in this section is summarized in the appendix for

readers’ convenience. In practice, only L, N , Nj , Qj , and mjk are known quantities, but n(t),

nj(t), r(t), and rj(t) are unknown monotone stochastic processes increasing or nondecreasing with

the time of use of the pools. In the rest of the paper, the time label is suppressed whenever there

is no potential for confusion.

As discussed above, the number of compromised items is an unknown random variable or a

time series. To predict its value, a statistical model must first be established. One simple and

reasonable way to judge whether an item has been compromised is to resort to item exposure

numbers, which is the number of examinees to whom the item has been administered in their

tests. Note that an item may be leaked after it is administered to just one test taker who shares

test item information with others, while an item that has been used by many honest examinees

is not necessarily compromised. However, from a statistical point of view, the larger the item

exposure number, the greater the chance is that the item is compromised. Thus, items with their

exposure numbers exceeding a certain level should be retired. A simple and practical model for

this is a linear additive probability model

Prob{An item is compromised} =
The exposure number of the item

C
, (1)

where C is the item retirement age; that is, an item is retired if its exposure number reaches C.

More realistic models may be established after a careful consideration of other factors involved
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in an operational computer-based test. For example, a difficult item might be more likely to be

compromised than an easy item. A detailed discussion about how to establish these kinds of

models has to be case-based and will not be further pursued in this paper.

Based on the model in (1), one can calculate the expected number of compromised items

in the pool(s) after t examinees have taken the test before any items are retired for both

the single-pool approach and the multiple-pool approach. Because the model is additive, the

probability that an item is compromised increases by 1/C every time the item is administered

to an examinee. The total number of item exposures after t examinees have taken the test is tL

whether a single item pool is used or multiple item pools are used. Thus, the expected number of

compromised items in the J pools is the same (i.e., tL/C) as that in the single pool. This result

holds with any linear additive probability models for an item to be compromised. In the rest of

the paper, assume that the number of compromised items in the single pool is the same as the

total number of compromised items in the multiple pools after the same pool usage, although the

numbers are unknown. That is, n(t) =
∑J

j=1 nj(t) −
∑J−1

j=1

∑J
k=j+1 mjkpjk(t) for any t, where∑J

j=1 nj(t) −
∑J−1

j=1

∑J
k=j+1 mjkpjk(t) is the total number of compromised items in the multiple

pools under the constraint of no overlap among any three pools.

Below, an example with concrete numbers is discussed, followed by generalized results

presented in a theorem. Assume there are 1,800 items available. Suppose an examinee has studied

360 items out of the 1,800 items after these items have been used for a while, either in the form of

a single pool or multiple pools. Note that this example, which only presents a snapshot in time

when there are 360 compromised items, is used here to better understand the generalized results

presented in the theorem. If a single item pool is used, then, this examinee has a 20% chance that

the ith item he or she gets is a compromised item (see the theorem below). That is, for any fixed

i, P1(i) = 0.2. Note that this probability is independent from i, the sequence or order of items the

examinee gets.

If these 1,800 items can be used to construct two item pools with each pool (subpool)

satisfying all measurement requirements of the test, then these two pools can rotate in and out of

use. Assume that the sizes of these two item pools are the same (i.e., N1 = N2). There are two

possible cases: one case where the two pools are mutually exclusive (i.e., m12 = 0) so there would

be 900 items in each item pool, and the other case when there are m12 common items in the two

pools (in this example, m12 is fixed to be 200 and hence there would be 1,000 items in each pool).
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The number of compromised items in the first pool, n1, is between 0 and 360, but is unknown.

If m12 = 0, then there are 360 − n1 compromised items in the other pool. The examinee

who has studied 360 compromised items has a n1/900 = (n1/9)% chance that the ith item

he or she gets is a compromised item if the first pool is administered to him or her, or a

(360 − n1)/900 = ((360 − n1)/9)% chance if the second pool is used. Thus, according to the

total probability formula (see Bickel & Doksum, 1977, p. 440), the chance that the ith item

administered to an examinee is a compromised item is

P2(i) =
1
2
× n1

900
+

1
2
× 360− n1

900
= 0.2

for the case without an overlap between two pools. Note that this chance is exactly the same as

that in the single-pool scenario.

If the two pools have 200 common items, then the result depends on the number of

compromised common items. Let us first look at three special situations: no common items are

compromised (i.e., p12 = 0.0), the percentage of compromised common items is the same as the

percentage of all compromised items (i.e., p12 = 0.2), or all common items are compromised (i.e.,

p12 = 1).

• If no common items are compromised, then for any fixed i,

P2(i) =
1
2
× n1

1000
+

1
2
× 360− n1

1000
= 0.18.

This probability is less than 0.2, corresponding to when a single item pool is used.

• If the percentage of compromised common items is the same as the overall percentage of

compromised items, that is, 20%, then there are 40 compromised common items and the

number of compromised items in the second pool is n2 = 360 − n1 + 40. Therefore, for any

fixed i,

P2(i) =
1
2
× n1

1000
+

1
2
× 360− n1 + 40

1000
= 0.2.

This is exactly the same as that with a single item pool.

• If all common items are compromised (in this case n1 should be at least 200), then for any

fixed i,

P2(i) =
1
2
× n1

1000
+

1
2
× 360− n1 + 200

1000
= 0.28.
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This probability is much larger than the corresponding probability when using a single item

pool.

Thus the probabilities are different under different situations. Generally, the number of

compromised common items is 200p12 and the number of compromised items in the second pool is

n2 = 360− n1 + 200p12. Therefore, for any fixed i,

P2(i) =
1
2
× n1

1000
+

1
2
× 360− n1 + 200p12

1000
= 0.18 + 0.1p12.

Thus,

P1(i)− P2(i) = 0.1(0.2− p12).

If p12 > 0.2, then P2(i) > P1(i); that is, the single-pool approach is better than the two-pool

approach. When p12 < 0.2, the two-pool approach outperforms the single-pool approach. Since

p12 is a time series, it is quite possible that one approach is better than the other for some period

of time and is worse for some other period of time. The generalized results are presented in the

following theorem.

Theorem. Assume that a randomized item selection method is used in the test. Then,

1. P1(i|t) = r and P2(i|t) = r1(t)Q1 + r2(t)Q2 for any fixed i. Thus, X1(t), . . . , XL(t) have the

same Bernoulli distribution when one item pool or two item pools are used. The expected

number of compromised items encountered by an examinee at time t is

L∑
i=1

PJ(i|t) = LPJ(1|t) for J = 1, 2.

2. If the two item pools have no common items and Q1 = Q2 = 1/2, then for any fixed i,

P1(i|t)− P2(i|t) =
N1 −N2

2N2
(r1(t)− r(t)). (2)

Thus, P1(i|t) > P2(i|t) if, and only if, (r1(t) − r(t))(N1 − N2) > 0; that is, the two-pool

approach is better than the single-pool approach at time t if, and only if, the proportion of

compromised items in the larger subpool is greater than the overall proportion of compromised

items at time t. When the sizes of two subpools are the same (i.e., N1 = N2), P2(i|t) ≡ P1(i|t)

for any t; that is, the two approaches are the same with respect to the expected number of

compromised items administered to a randomly selected examinee.
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3. If Q1 = Q2 = 1/2, the two pools have m12 common items, and among the common items the

percentage of compromised items is p12(t), then for any fixed i,

P2(i|t) =
1
2
(r1(t) + r2(t)) =

1
2

[
n1(t)
N1

+
n(t)− n1(t) + m12p12(t)

N2

]
. (3)

Further, if N1 = N2, then

P2(i|t) =
n + m12p12(t)

N + m12
,

and

P1(i|t)− P2(i|t) =
m12

N + m12
(r(t)− p12(t)).

Thus,

• P2(i|t) > P1(i|t), if p12(t) > r(t),

• P2(i|t) = P1(i|t), if p12(t) = r(t), and

• P2(i|t) < P1(i|t), if p12(t) < r(t).

That is, the two-pool approach is better than the single-pool approach at time t if, and

only if, the proportion of compromised common items is less than the overall proportion of

compromised items at time t.

In general, suppose there are J item pools.

1.

PJ(i|t) =
J∑

j=1

rj(t)Qj . (4)

If an examinee has the same chance of being administered each of the pools in the case of

multiple pools, then

PJ(i|t) =
J∑

j=1

rj(t)/J. (5)

The expected number of compromised items encountered by an examinee at time t is

L∑
i=1

PJ(i|t) = LPJ(1|t). (6)

2. Suppose that the sizes of pools are the same in the case of multiple pools and an examinee

has the same chance of being administered each of the pools. Then

PJ(i|t) =
n(t) +

∑J−1
j=1

∑J
k=j+1 mjkpjk(t)

N +
∑J−1

j=1

∑J
k=j+1 mjk

, (7)
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and

P1(i|t)− PJ(i|t) =
1

N +
∑J−1

j=1

∑J
k=j+1 mjk

J−1∑
j=1

J∑
k=j+1

mjk(r(t)− pjk(t)). (8)

Thus, P1(i|t) > PJ(i|t) if, and only if, r(t) > p∗(t). That is, the multiple-pool approach

is better than the single-pool approach at time t if, and only if, the overall proportion of

compromised common items is less than the overall proportion of compromised items at time

t. If multiple pools are mutually exclusive, then for any t, PJ(i|t) ≡ P1(i|t).

In reality, the size of each of a set of multiple pools is likely to be close to each other. Thus,

(N1 − N2)/(2N) should be very small. According to (2), P2(i) ≈ P1(i) if the two pools are

mutually exclusive. In general, when the sizes of pools are the same in the case of multiple pools

and an examinee has the same chance of being administered each of the pools, the single-pool and

the multiple-pool approaches are exactly the same in terms of the probability that a compromised

item is given to an examinee if there is no common items.

When there are common items, the overall proportion of compromised common items is the

key quantity in determining whether employing multiple pools is better than using a single pool. If

all items are new at the beginning, the common items may get much higher exposure than unique

items that belong to one pool only. Consequently, the overall proportion of compromised common

items is expected to be larger than the overall proportion of compromised items. According to the

theorem, it is worse in terms of test security to use multiple pools in this case than a single pool.

Therefore, it is of no benefit with respect to test security to use the multiple pools unless there are

other considerations. Some other possible applications of the theorem, including how to optimally

construct item pools, will be discussed in the next section.

The proof of the theorem is presented below. The reader who is willing to accept all this

without proof may skip the rest of this section and go to the next section. A basic result in the

field of probability is needed to prove the theorem. This result can be found in a probability text

from Fudan University (1979, p. 29). For the readers’ convenience, this paper first states this

result as a lemma and provides a brief proof and then presents the proof of the theorem.

Lemma. Suppose there are N balls with n red and N − n green balls. Randomly and

sequentially sample L balls without replacement. Then the probability that the ith sampled ball

is red is n/N for any fixed i (1 ≤ i ≤ L).
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Proof of Lemma. First, continue to randomly sample the rest of the balls sequentially after

sampling L balls. Let P (i) be the probability that the ith sampled ball is red. The total number

of possible outcomes in this experiment is N !. By the multiplication principle (see Hogg & Tanis,

1997), the number of outcomes that the ith sampled ball is red is n× (N − 1)!. Thus, for any fixed

i,

P (i) =
n× (N − 1)!

N !
=

n

N
.

Proof of Theorem.

1. Regard compromised items as red balls and other items as green balls. By the lemma,

P1(i) = n/N = r, and the conditional probability that the ith item administered to an

examinee is a compromised item given pool j is rj = nj/Nj for j = 1, 2. According to the

total probability formula, P2(i) = r1Q1 + r2Q2 is obtained for any fixed i.

2. In this case, N = N1 + N2. From the first part of the theorem,

P1(i)− P2(i) =
n

N1 + N2
− n1

2N1
− n− n1

2N2

=
(N1 −N2)(n1N − nN1)

2NN1N2

=
N1 −N2

2N2
(r1 − r).

3. The number of compromised common items is m12p12. Thus, n2 = n− n1 + m12p12. By the

first part of the theorem, (3) is obtained. Further, if N1 = N2, then 2N1 = N + m12. By (3),

P2(i) =
n + m12p12

2N1
=

n + m12p12

N + m12
,

and

P1(i)− P2(i) = r − n + m12p12

N + m12
=

m12

N + m12
(r − p12).

The proof for the multiple item pools is similar. According to the total probability formula, (4)

and (5) can be obtained. When the sizes of item pools are the same, JN1 = N +
∑J−1

j=1

∑J
k=j+1 mjk.

Since
∑J

j=1 nj = n +
∑J−1

j=1

∑J
k=j+1 mjkpjk, by (5)

PJ(i) =

∑J
j=1 nj

JN1
=

n +
∑J−1

j=1

∑J
k=j+1 mjkpjk

N +
∑J−1

j=1

∑J
k=j+1 mjk

,

and it is not difficult to verify (8).
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3. Examples of Applications

The theoretical results presented in the previous section can be applied to solve several issues

related to test security with CBT. First, the theorem can be used directly to evaluate and compare

the impact of item sharing when a single item pool or multiple item pools are used. Second, the

theoretical results provide a guideline for constructing item pools optimally in terms of minimizing

the expected number of compromised items administered to an examinee. Third, the results can

be used to evaluate the risk of some CBT designs.

How to construct pools optimally. As pointed out in the last section, if all items are

new at the beginning, it is better to use a single item pool than multiple item pools with overlap.

After the single pool has been used for a while, multiple pools can be adopted. When compiling

two item pools, new items and/or items with small item exposure numbers in the original pool

should be put in both pools as common items. In this way, employing multiple pools is better

than using the single pool in terms of minimizing the impact of possible item sharing among

a group of examinees, according to the theorem. However, the exposure number of a common

item usually increases more rapidly than that of a unique item. Thus the chance of a common

item becoming a new compromised item is larger than that for an unique item. As time passes,

the rate of compromised common items increases and likely becomes higher than the overall

rate of compromised items. According to the theorem, it will be worse to employ multiple

pools than the single pool at this point. Therefore multiple pools should be maintained (i.e.,

recompiled) periodically to keep the proportion of compromised common items small, by replacing

high-exposure common items with low-exposure or new items. This mixed approach is called an

adjusted-pool approach in this paper. According to the theorem, the adjusted-pool approach is

better than the single-pool approach if item pool maintenance can be properly performed.

To evaluate the risk of item reuse scheme. Because items are expensive, some items

will be reused. A typical case is that an item pool is suspended after it has been used for a while.

Some items with extremely high item exposure numbers are retired, but others are possibly reused

with new items later. Suppose that item pools, a single pool or two pools, are composed of N −M

used items and M new items. A practical issue is to evaluate the risk of this item reuse scheme.

When evaluating the risk, it is better to consider the worst case scenario where all used items

have been compromised by a group of test takers. Then, P1(1|t = 0) = (N −M)/N for the single

pool, or P2(1|t = 0) = (N −M + m12p12)/(N + m12) for two pools, where p12 is the percentage
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of used items among common items. It is easy to verify that P2(i|t = 0) is minimized when all

and only new items are put in both pools as common items, that is, p12 = 0 and m12 = M .

Therefore, the optimal two-pool design is one in which one pool consists of all the new items

and a half of used items and the other pool consists of all the new items and the other half of

used items. If such a two-pool design is used, P2(i|t = 0) = (N −M)/(N + M) and the expected

number of compromised items encountered by a test taker who has studied all the used items is

L(N − M)/(N + M). Since the expected number of compromised items encountered by a test

taker is L(N −M)/N for the single pool, the difference of these expected numbers between using

the single pool and the optimal two pools is

LM(N −M)
N(N + M)

. (9)

For example, if N=1,000, M=500, and L=60, the expected number of compromised items

encountered by a test taker at the beginning of the testing program is 30 if the single pool is used,

and it is 20 if the optimal two pools are used. Tables can be produced based on (9) for different

L, M , and N for practical uses. Note that the price or the cost of the gain is that new items

as common items will have higher usage than the other items. Thus new items will deteriorate

quickly. When the mean raw score of used items is available, the average maximum gain in raw

scores for the examinees who have studied the used items can be obtained. Further, the average

maximum gain in reported scores due to the item reuse may also be calculated according to the

raw score to reported score conversion table.

4. Discussion

This paper compares the use of multiple pools to use of a single pool with respect to test

security against large-scale item sharing in a computer-based test. The comparison is made under

the assumption that a randomized item selection method is used. The results show that, in

general, simply using multiple pools instead of a single pool actually does not improve test security

in terms of the expected number of compromised items encountered by a test taker. Based on

the theoretical results, an adjusted-pool approach is proposed in this paper to achieve optimal

test security. Usually, the probabilistic scheme of an operational item selection algorithm is very

complicated. Thus it is hard to compare the use of multiple pools mathematically with a single

pool in terms of test security when an operational item selection algorithm is used. To get actual
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results for a given operational item selection algorithm, a Monte Carlo simulation study is needed.

The results obtained in this paper provide technical guidelines for solving many practical

issues in CBT such as (a) evaluating the risk of employing an item reuse scheme, (b) optimally

constructing multiple pools given a set of items to minimize the risk, and (c) estimating the

possible gain in test security by using the adjusted-pool approach instead of the single-pool

approach. Although different item selection algorithms may yield different average numbers of

compromised items administered to examinees, the guidelines for optimally constructing item

pools with respect to test security should still hold for any reasonable item selection algorithm.

An item selection algorithm is considered to be reasonable if it tries to balance item exposure

rates. The adjusted-pool approach will not improve test security if an item selection algorithm

prefers to choose some items but never selects some other items in the pools. When applying

the adjusted-pool approach to an operational CBT program, other factors, such as content

requirements, will need to be considered simultaneously along with the test security issue.

To evaluate the impact of item sharing, the number of compromised items in a pool must be

predicted first. A simple linear model for predicting the number of compromised items is proposed

in this paper. Further research on this issue is needed.
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Appendix

Notation

J The number of item pools in a multiple-pool approach

L The test length

M The number of new items

mjk The number of common items of pool j and pool k for 1 ≤ j < k ≤ J

N The total number of items

Nj The number of items in item pool j for j = 1, . . . , J

n(t) The total number of compromised items at time t or after t examinees have

taken the test

nj(t) The number of compromised items in pool j at time t for j = 1, . . . , J

PJ(i|t) The probability that the ith item of an examinee is a compromised item at

time t if J item pools are used (1 ≤ i ≤ L and J ≥ 1)

pjk(t) The proportional of compromised items among common items of pool j and

pool k for 1 ≤ j < k ≤ J at time t

p∗(t) The overall proportion of compromised common items at time t,

p∗(t) =
∑J−1

j=1

∑J
k=j+1 mjkpjk(t)/

∑J−1
j=1

∑J
k=j+1 mjk

Qj The rate of usage of pool j in the case of multiple pools for j = 1, . . . , J ,

and Q1 + · · ·+ QJ = 1

r(t) The overall proportional of compromised items at time t; r(t) = n(t)/N

rj(t) The proportional of compromised items in pool j at time t;

rj(t) = nj(t)/Nj for j = 1, . . . , J

t The number of examinees who have taken the test or the time period for which

an item pool or multiple item pools have been used

Xi(t) The indicator random variable if the ith item of an examinee is a compromised

item at time t or after t examinees have taken the test (1 ≤ i ≤ L)
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